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Abstract

In this paper, we developed a fuzzy model for an autemotive engine. The fuzzy model
was presented by a set of rules based on the Takagi-Sugeno type. The Gustafson-Kessel
(GK) algorithm was applied to determine the antecedent membership functions and east-
square estmation was used to determine the consequence parameters. The performance
of the fuzzy model was tested using a set of measurements recorded from a single
production vehicle with a 3.1 1 V-6 engine and a four speed automatic transmission. This
data was collected earlier during a project implemented at George Mason University,
USA. The developed fuzzy model was able to provide a good modeling capabilities.

Accepled Seprember 16, 2002.



E.2 Alla F. Sheta & Janos Gertler

1. Introduction

The idendfication process for the dynamics of linear system is well defined. Mean while,
the identificadon of nonlinear systems is a challenging rask. The identification process of
2 complex nonlinear system can be considered as the development of a reladonship
between some input and output vanables of the system under consideration. This is why
the idendfication of a suitable model for industrial processes is a major problem for
control engineering [1,2]. Finding a suitable model for an automobile engine depends
mainly on the type of existing nonlinearity and the approach to which the model
parameters are esimated [3,4]. Tradidonal approaches for structure determination and
parameter identificadion have difficulty in esimadng nonlinear system paramerers
especially with limited number of measurements [5].

Fuzzy logic was orginally inwroduced as a way to formally describing and manipularing
linguistic information [6,7,8]. Later, it was clear that fuzzy logic is also a powerful tool for
system identificadon and control of dynamical nonlinear processes [9,10,11]. In this
paper we concentrate on the approximadon of an automotve engine dynamics by a ser
of local linear models. Each local model is valid for a certain range of operadng
conditions and an interpolative scheduling mechanism combines the outputs of the local
models into a condnuous global outpur. Such 2 model structure can be convenientdy
represented by means of fuzzy If-Then rules. Using membership functons, the
antecedent of the rule defines a fuzzy region in the producr space of the antecedenr
variables in which the rule is valid. The anrecedent variables must convey information
abour the process operating conditions. The consequent of the rule is typically a local
linear regression model. The overlap of the antecedent membership functons of
different rules provides a smooth inrerpolation of the rules’ consequents.

2. Engine Systemn

The engine system has three inpurs, throtde posidon is measured while fuel and exhaust
gas recirculadon are controlled. The block diagram of the engine system to be monirored
is shown in Figure 1.
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Figure 1: The engine variables
The developed modeling algorithm depends on the following variables:

®  fuel injecrors (Fuel)
*  exhaust gas recirculaton valve (EGR)

and four sensors, namely



Mansoura Engineering Journal, (MEJ). Vol. 27, No. 3. September 2002.

* throtle position (Thr)

* manifold pressure (MAP)
* engine speed (RPM)

*  exhaust oxygen (VO2)

The engine sysem can be presented in the form of three single-output subsystems
interacting ro form the whele engine system.

1. The Mainfold Subsystern contains the gas mechanics of the intake manifold,
including the engine as a pump and the throttle, the ENG valve and the fuel
injecrots as inpuz. [ts outpur is the manifeld absolute pressure.

2. The Intertail Subsystem contains the dynamics of the movement of the
powertrain and the vehicle. These dynamics depend on the vehicle mass, air drag,
transmission gear, erc. The subsystem inputs are thromle, EGR, fuel, the
manifold absolute pressure and the load torque; irs output is the engine speed

(RPM).

3. The Air-Fuel Subsystem conrains the reaction chemistry of the engine. Its inpurs
are throttle, EGR, fuel, manifold absolute pressure and the engine speed, its
outpur is the oxygen sensor voltage. Since only the internal subsystem is affecred
by the load rorque (the unknown disturbance) and the time varying paramerers
such as the vehicle mass, insensidvity with respect to those can easily be achieved
by omitting this subsystem from the modeling algorithm.

The function model of the engine can be presented in the form of three interacting single
ourpur subsystems as shown in Figure 2.

rT: BGR Tuel Lasd
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Figure 2: Engine subsystemns
3. Fuzzy Model Structure

Many classes of nonlinear systems were modeled using the Takagi-Sugeno {TS) fuzzy
models [12,13]. In our case, consider the dynamics of the engine can be described as
inpur and outpur model. This will help in predicting the nexr model output. In the
discrete-time svstern we can write the relationship berween a svsrem thar has four inpucs
1y (k)ory (hyony ()., (kY and single-ourpur yf&) at time £ in the following formar:

E.3
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V&Y = f(uy (k) uy (K)oq (KD, u g (K))

| 0)
The function fis a stade funcdon that relates the inpur and ourput of the engine model.
Fuzzy models of different types can be used to approximate this relationship function f
One of the most common models is the NARX (Nonlinear Auto-Regressive with

eXogenous input) model:

k)= f Qg (kg (k) u; (k)

@
wy{k)s...it, (k) and p(&) represents the model inputs and outpur, respectively. / is integer
related to the model order.

For subsystem 1 of the engine, which has four inputs and single outpur, the set of fuzzy
rules can be presented as follows:

R;:Ifufklis. 4 and.... and #,(k)is A,
then yf&) is ¢,
3
For subsystem 2, which has three inpurs and single outpur, the ser of fuzzy rules can be
presented as follows:

Ri:Ifufk)is.4, and ..., and » (k) is A,
then y(&) is ¢,
&

Since fuzzy models can approximare any smooth funcdon ro any degree of accuracy [14]
models of the ype NARX can approximare any observable and controllable models of a
large class of discrete-ome nonlinear systems [15].

4. Regression Maurix

Using the set of measurements N for the automobile engine we can build the regression
matrix ¢ and the outpur vector y for each subsysrem. For example, the regression matrix

¢ and the outpur vector y for subsystem 1 can be described as follows:

u, (k) u, (k) wy (k) g (k)
wlk+1) uy(k+1) wy(k+1) ug(k+l)

@=

u,(-N) ifg(.N} uy(N) u4(N)
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y{k)
y(k+1)

W)

&)
5. Identification Methodology

The structute of the model takes in consideration the uset @ prorr knowledge about the
system. Comparing sevctal candidate structures in terms of the predicton emor or othet
selected criteria [16] can be considered in our case.

Once the model structure selected, the next step is to estimate the main parameters of
the fuzzy model. These parameters include the amiecedent membership fundtions and the
consequence polynomials. Addidonal parameter need to be selected. This parameter is the
aumber of rules (clusters) o which need to be specified by the user. The methodology
to build a fuzzy model for modeling the dynamics of an automotive engine can be
described in the following steps:

1. To develop the nonlinear regression model we collect a data set of measurements

a (k) 1y (K), w3 K)oy (k) and the uset defined paramerers to find y(&).

Compute the antecedent membership funetion from the cluster parameters.

3. Given the antecedent membership functions, estimate the consequence parameters
by the least-square method.

I

This technique was introduced in [17,18] and was successfully applied to modeling and
control of mult-inpur single outpur (MISO) system process [19,20] In the next section,
we give some derails about the identification methodology based fuzzy logic.

5.1 Fuzzy Clustering

Given the regression matrix ¢ and the specified number of clusters &, Gustafson-Kessel
{GK) algorthm [17,18] is applied. This algorithm computes the following:

1. The fuzzy partiion mattix U =[],y With 4, €[01]. # is the membership degree.
/ stand for the rule number.

2. ¥=[y. ... v,] isthe protorype marrix.

3. The set of cluster covariance matrices F=[F, .... F,], F, are positve definite

matrices in  RP*P¥P*D |y is the dimension of the antecedent space.

Given the trple, (U, 17,F) the antecedent membership functions and the consequence
parameters .4, and ¢ can be computed for the two subsystems. The Gustafson-Kessel
(GK) algorithm for multi-input mult-outpur (MIMO) systems. is described in [12,13,22].

E. 5
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5.2 Consequent Parameters

In our case, the fuzzy model inputs are u={i,u,u,4,], y stand for the model output.
There are several possibility to estimate the consequence parameters 4; and ¢ =os
descrbed in [22]. We adopred the weighted least-square estimation 1o find the fuzzy
modei paramerers.

Let 6" be the vector which has the coefficient of the consequence polynomial A4, and ¢,
Let ¢ be the matrix YMand the matdx W be 2 diagonal marrix with dimension
R™ having a membershup degree He a5 its k th diagonal element. Assuming that the

column of the matrix X are linearly independent and A0 fop 1Sk <L , then:

o=@ wp) o'Wy

©
@ is the least-square soludon of the equation y= X6+ & where the £ 5 data pair (u,y) is
weighted by 4, .

6. Experimental Setup

Experiments have been conducted on a single production vehicle with a 3.1 I V-6 engine
and a four speed automatic transmission. The engine is equipped with simultaneous
muld-port fuel injection and a three-stage binary EGR valve. The oxygen sensor in
unheated. In addition ro the basic actuators (Fuel, EGR) and sensors (Thr, MAP, RPM,
V(2), the cat has a stepping motor driven idle air valve (IAC) and a coolant temperature
and manifold air temperature sensor (COT, MAT). Data was collected, over several
occasions, in the following operadng modes:

city drving, normal car

highway dnving, normal car

hilly terrain, norrnal car

hilly terrain, EGR valves stuck open

Ca & U

The training data set used is shown in Figure 3. A data ser of 1000 measurements was
used in the training case. A set of 2000 measurements that includes the training data was
used in the testing process.

6.1 Evaluadon Criterion

As a figure of merr, we take the Variance-Accounted-For (VAF) as a major of
performance in the modeling process. The VAF is calculated as:

A

VAF =1-250=Y) 100%
var(y)
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7. Modeling for Subsystem 1 of the Engine
7.1 Regression Model

We developed a regression model for the sake of comparson, The model parameters
were esdmated using Least-Square Estimarion (LSE). The equation thar describes the
dynamics of subsystem 1 was as follows:

(k) =0.2853u (k) — 028150, (k) + 0.0804u, (k) + 0.0045u, (k) +1.6613

®
The VAF was computed in both training and testing cases using the above model. The
actual output of subsystem 1 and the predicted output generated from the above medel
are shown in Figure 4 and 5, in both training and testing cases. The difference berween
the actual and estimated responses is also shown.
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Figure 3: Training data set of u,,u;,u;,u,, y for subsystem no. 1

7.2 Fuzzy Model

To develop the fuzzy model for the engine we used the Fuzzy Model Idendficaden
Toolbox (FMID) written in Matlab [13]. To use the wolbox the input-output training
data was described in a matrix format as in ¢ and y, respecdvely. The number of clusters
¢ should be identified by the uset. In our case, we have tried number of clusrers to build
various models. The models with che best modeling capabilities will be selected.

E.7
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In the case of subsystem1, the number of clusters was set to 4. This number is a scalar
value, since we have a single output system, If we have more than one output, it should
be set as a vecror, which has an element for each output.

Actual and Predicled responses using LSE- Training Case

49
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Figure 4: Actual and predicted responses for subsystem no. 1 in the training case: LSE case

Actual and Pradicled responses using LSE—- Testing Case
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Figure 5: Actual and predicted responses for subsystem no. 1in the testing case: LSE cage
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The termination tolerance for the clustering algotithm can be set prior. We used the
developed fuzzy medel to obtain the consequent parameters and the cluster cenrters.
These parameters are shown in Table 1 and 2. In the following we show the set of rules
that describe the developed fuzzy model for subsystem 1.

Rules:

1. If w54, and w,is A,; and x, is A, and &, is A4, then
k) = 0.00x10° u,(k) -3.12x 10" u,(k) +5.06x107u,(k) +2.47x1074,(&) +5.55x10°

2. If w55 A, and 4, is A,y and w) is A,y and #, is A, then
(k) = 9.30x107 u,(k) -5.14x107u,(k) +1.40x10" (k) +5.69x10" u,(k) +0.00x10°

3. If # i A,y and a, is Ay, and 4, &5 A,; and &, is A, then
(k) = 2.39x10" w, (k) —3.63x10" u (k) +1.01x10" w0k} +5.33x1074,(&)+0.00x10°

4, If u, ir A, and «, i5 A,;, and &, is A,; and 4, is A,, then
(k) = 4.26x107" u (k) =4.80x10" a,(k) +4.25x107a,(k} +7.42x104,(k)+0.00x10°

rule | U, 1, , offset
1 0.00x10" -3.12x10" 5.06x107 2.47x107 5.55x10°
2 9.30x107 -5.14x107 1.40x10™ 5.69x10° 0.00x10°
3 2.39x10° -3.63x10" 1.01x10" 5.33x107 0.00x10°
4 4.26x10" ~4.80x10" 4.25x10° 7.42x10° 0.00x10"
Table 1: Consequence Parameters
rule u ", by u,

1 2.14x10™ 1.78x10" 5.04x10" 7.85x10°

2 4.50x10° 1.90x10" 6.05x10" 1.25x10°

3 1.97x10' 1.80x10" 1.04x10" 1.54x10°

4 3.44x10' 1.70x10" 1,39x10° 1.89x10°

Table 2: Clusters Centers

The actual outpur of subsystem 1 and the predicted ourpur generated using the fuzzy
model is presented in Figure 6 and 7, in both training and testing cases. The actual
output is shown in the solid line and the generated output is shown in the dotred line.
The ertor difference between the two charactedstics is shown in the lower figures.

It can be seen from the results of modeling the dvnamics of subsystem 1 using both
regression and fuzzy models that the modeling abilities of the fuzzy model is berrer. We
computed the VAF values in both che training and testing cases which are given in Table
5.
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Actual and Predicted responses using FL— Training Case
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Figure 6: Actual and predicted responses for subsystem no, 1in the training case: FL case

Actual and Pradictad responses using FL— Testing Case

Figure 7: Actual and predicted responses for subsystem no. 1in the testing case: FL case

8. Modeling for Subsystem 2 of the Engine
8.1 Regression Model

We developed a regression model for the sake of comparison. The
were estimared using Least-Square Estimation (LSE). The equadon
regression model was found as follows:

y(k)=57382u,(k)—0.1101us(k) = 0.016luy (k) + 37.9511

model patameters
that describes the

)
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The set of model paramerers were estimated using LSE. The training data used in our
case is shown in Figure 8. The system has rhrce inputs and single output. The acrual and

predicted responses in the regression case are shown in Figure 9 and 10,
ul u2
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Figure 8: Training data set of u,u;,uy, y for subsystem no. 2

Actual and Pradisted respongss using LSE- Tralning Case
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Figure 9: Actual and predicted responses for subsystem no. 2 in the training case: LSE case
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Actual and Predicted responses using LSE- Tesling Case
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Figure 10: Actual and predicted responses for subsystem no. 2 in the testing case: LSE case

8.2 Fuzzy Model

In this section we use the fuzzy modeling methodology to describe the dynamics of
selected 1o model in the case of subsystem 2
was set to 5. We used the developed fuzzy model to obuain the consequent parameters
and the cluster centers. These parameters are shown in Table 3 and 4. In the following

subsysrem 2, The number of clusters o

we show the set of rules that describe the developed fuzzy model for subsystem 2.

Rules:

1. If #,i5A, and &, 5 A,; and 4, is A, then
(k) = 5.35x10° #,(k) + 2.97x10%%,(k) —3.50x10"x,(k) +5.4x10'

2. If w,is A, and &, is A, and &, is A, then
(k) = 6.46x10° u, (k) +2.06x10" u,(k) —8.22x1074,(k) +1.02x10°

3. If 4, /5.4, and &, is A, and «, is A;, then
(&) = 4.44x10" 4, (k) +4.30x 10" u,(k) +2.05x107u,(k) +22.1x10°

4, If u, isA,, and &, is A, and u, is A,, then
(k) = -1.03x10° u, k) +6.05x10" u (k) —7.48x10u, (k) +75.6x10°

5. If u, is A, and u, is Ay, and u; is A;, then
(k) = 3.04x10° 4, (k) +4.15x107,(k) —7.33x1074,(k) +2.02x10°
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rule i Uy iy offset
1 5.35x10° 2.97x10" -3.50x10% 5.4x10'
2 6.46x10° 2.06x10" —8.22x10 1.02x10°
3 4.44x10° 4,30x10" 2.05x10° 22.1x10°
4 -1.03x10" 6.05x10” —7.48x10° 75.6x10"
5 3.04x10° 4,15¢107 ~7.33x107 202x10°

Table 3: Consequence Parameters

rule U Uy iy
1 4.59x10° 1.30x10” 7.79x10°
2 1.26x10" 5.31x10" 1.40x10°
3 1.35x10" 4.60x10" 9.01x10°
4 2.17x10" 1.36x10° 1.81x10°
5 3.24x10" 2.34x10° 2.07x10°

Table 4; Clusters Centers

Figures 11 and 12 we show the actual and predicted responses for the fuzzy model of
subsystemn 2. The same ser of training and testing dara used in the regression case was
used to tesr our fuzzy model.

Actual and Predicted responses using FL= Training Case
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Figure 11: Acrual and predicted responses for subsystem no. 2 in the training case: FL case
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Actual and Pradidzd responses using FL- Testing Case
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Figure 12: Actual and predicted responses for subsystem no. 2 in the testing case: FL case

The values of the VAF for both training and testng cases using LSE and Fuzzy logic
techniques are presented in Table 5.

Technique Least-Square | Fuzzy Logic
VAF VAF

Subsystem 1

Training 99.1462 99.5788
Testng 99.2469 99.5179
Subsystem 2

Training 97.7248 98.9487
Testdng 97.5905 98.0164

Table 5: The VAF for the development models using LSE and FL

Conclusions

In this paper we developed a fuzzy model for two main subsystems of the auromodve
engine. The fuzzy model was presented by a set of rules based on the Takagi-Sugeno
type. The Gustafson-Kessel (GK) algorithm was applied to determine the antecedent
membership funcdons and least-square estmation was used to determine the
consequence parametcrs. The performance of the fuzzy model was tesred using a ser of
measurements recorded from a single production vehicle with a 3.1 I V-6 engine and a
four speed automate transmission. The performance of the fuzzy model was tested using
the VAF criterion. The fuzzy model was suceessfully able to build a relationship berween
the model inpur and output. The results for both training and testng cases were berter
than the regression model in all cases.
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